6.6 Solving Problems Involving Random Variables

求解涉及随机变量的问题

6.6.1 核心概念总结 / Core Concepts Summary

函数随机变量:

如果 \(X\) 是随机变量,\(g\) 是函数,那么 \(Y = g(X)\) 也是随机变量。可以利用 \(Y\) 的统计量推导出 \(X\) 的统计量。

Function Random Variables:

If \(X\) is a random variable and \(g\) is a function, then \(Y = g(X)\) is also a random variable. The statistics of \(Y\) can be used to deduce the statistics of \(X\).

线性变换反推:

对于线性函数 \(Y = aX + b\),已知 \(Y\) 的期望值和方差可以直接推导出 \(X\) 的期望值和方差。

Linear Transformation Inversion:

For linear function \(Y = aX + b\), knowing the expected value and variance of \(Y\) allows direct deduction of the expected value and variance of \(X\).

反推的关键步骤:

Key Steps for Inversion:

  1. 函数反解:将 \(Y = g(X)\) 反解为 \(X = h(Y)\)。Function inversion: Solve \(Y = g(X)\) for \(X = h(Y)\).
  2. 期望值反推:\(\mathrm{E}(X) = \mathrm{E}(h(Y))\)。Expected value inversion: \(\mathrm{E}(X) = \mathrm{E}(h(Y))\).
  3. 方差反推:对于线性函数,\(\operatorname{Var}(X) = \frac{\operatorname{Var}(Y)}{a^2}\)。Variance inversion: For linear functions, \(\operatorname{Var}(X) = \frac{\operatorname{Var}(Y)}{a^2}\).
  4. 一一对应性:函数 \(g\) 必须是一一对应的。Bijectivity: Function \(g\) must be one-to-one.

6.6.2 反推公式总结 / Inversion Formulas Summary

线性变换 \(Y = aX + b\) 的反推公式:

Inversion formulas for linear transformation \(Y = aX + b\):

\[\mathrm{E}(X) = \frac{\mathrm{E}(Y) - b}{a}\]

\[\operatorname{Var}(X) = \frac{\operatorname{Var}(Y)}{a^2}\]

\[\sigma_X = \frac{\sigma_Y}{|a|}\]

标准化变换示例 / Standardization Example:

对于 \(Y = \frac{X - 150}{50}\),如果 \(\mathrm{E}(Y) = 5.1\),\(\operatorname{Var}(Y) = 2.5\),则:

\[\mathrm{E}(X) = 50 \times 5.1 + 150 = 405\]

\[\operatorname{Var}(X) = 50^2 \times 2.5 = 6250\]

6.6.3 证明要点 / Proof Key Points

重要证明 / Important Proofs:

  • 方差定义等价性:\(\mathrm{E}[(X - \mathrm{E}(X))^2] = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2\)。
    Variance definition equivalence: \(\mathrm{E}[(X - \mathrm{E}(X))^2] = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2\).
  • 期望值线性性:\(\mathrm{E}(X + Y) = \mathrm{E}(X) + \mathrm{E}(Y)\)。
    Expected value linearity: \(\mathrm{E}(X + Y) = \mathrm{E}(X) + \mathrm{E}(Y)\).
  • 方差缩放性:对于常数 \(a\),\(\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)\)。
    Variance scaling: For constant \(a\), \(\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)\).

证明技巧 / Proof Techniques:

  • 利用期望值的线性性质进行反推。
    Use the linearity of expected value for inversion.
  • 注意常数项不影响方差。
    Note that constant terms do not affect variance.
  • 乘数因子影响方差的平方。
    Multiplicative factors affect variance by their square.

6.6.4 应用要点总结 / Application Key Points

解题策略 / Problem-Solving Strategies:

  • 识别线性关系:确认变换是否为线性形式。
    Identify linear relationships: Confirm whether the transformation is linear.
  • 求解反函数:将Y表示为X的函数,反解得到X表示为Y的函数。
    Solve for inverse function: Express Y as a function of X, then solve for X as a function of Y.
  • 应用线性性质:利用期望值和方差的线性性质进行计算。
    Apply linearity properties: Use linearity properties of expected value and variance for calculations.
  • 验证合理性:检查计算结果是否合理。
    Verify reasonableness: Check if calculation results are reasonable.

常见错误提醒 / Common Mistakes Reminder:

  • 忘记常数项不影响方差。
    Forget that constant terms do not affect variance.
  • 混淆期望值和方差的反推公式。
    Confuse inversion formulas for expected value and variance.
  • 忽略函数必须是一一对应的前提。
    Ignore the prerequisite that the function must be one-to-one.

6.6.5 思维导图总结 / Mind Map Summary

随机变量函数反推知识体系:

核心概念 反推方法 公式应用 注意事项
• 函数随机变量
• 线性变换
• 一一对应性
• 函数反解
• 期望值反推
• 方差反推
• 标准差反推
• \(\mathrm{E}(X) = \frac{\mathrm{E}(Y)-b}{a}\)
• \(\operatorname{Var}(X) = \frac{\operatorname{Var}(Y)}{a^2}\)
• \(\sigma_X = \frac{\sigma_Y}{|a|}\)
• 函数必须一一对应
• 常数项不影响方差
• 乘数影响方差平方
• 验证结果合理性